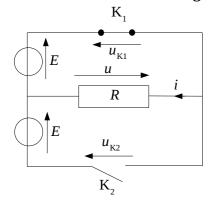
Tle STI GET Onduleur

ONDULEUR

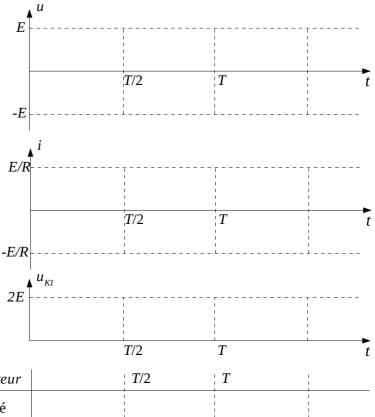
I. PRINCIPE DES ONDULEURS AUTONOMES

On appelle onduleur, un convertisseur statique continu-alternatif qui permet d'obtenir une tension alternative de valeur efficace fixe ou réglable à partir d'une source de tension continue.

L'onduleur est autonome si sa fréquence de fonctionnement est indépendante de la sortie.


Les onduleurs sont utilisés:

- pour réaliser des variateurs de vitesse des moteurs synchrones ou asynchrones;
- dans des alimentations de secours.


II. ONDULEUR DE TENSION MONOPHASÉE À 2 INTERRUPTEURS

1. Débit sur charge résistive

a. Schéma du montage

b. Oscillogrammes

c. Interprétation

De 0 à
$$\frac{T}{2}$$

 K_1 est fermé $\Rightarrow u_{K1} = 0$

Loi des mailles: $E + u_{K1} - u = 0 \implies u = E$

Loi d'ohm: $u = R.i \Rightarrow i = \frac{u}{R}$

On en déduit: $i = \frac{E}{R}$

De
$$\frac{T}{2}$$
 à T

 K_2 est fermé $\Rightarrow u_{K2} = 0$

Loi des mailles: $E + u_{K2} + u = 0 \implies u = -E$

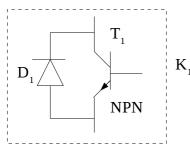
Loi d'ohm: $u = R.i \Rightarrow i = \frac{u}{R}$

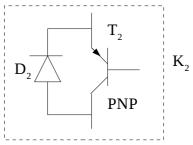
en déduit: $i = \frac{-E}{R}$

La tension u et le courant i, alternatifs et rectangulaire, ont même période; celle ci est imposée par l'ouverture et la fermeture des interrupteurs K_1 et K_2 .

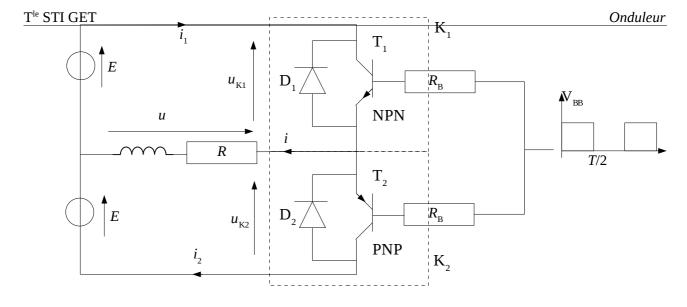
d. Conclusion

 K_1 et K_2 sont commandés à l'ouverture, ainsi qu'à la fermeture; lorsqu'ils sont ouverts, ils doivent supporter une tension positive. On peut envisager l'utilisation de deux transistors T_1 et T_2 travaillant en commutation.


2. <u>Débit sur charge inductive</u>


a. Structure des interrupteurs

Dans le cas d'une charge inductive, l'annulation du courant i et celle de la tension u ne sont pas simultanée (loi de Lenz).


Rappel: Le courant à travers une inductance ne peut subir de discontinuité. Lorsque K_2 est ouvert et K_1 fermé (u = E), l'intensité du courant peut être positive ou négative. Or un transistor (K_1) ne laisse passer le courant que s'il est positif.

Afin de permettre la circulation du courant dans les deux sens, on place une diode en formant un montage dit <u>antiparallèle</u>.

b. Schéma du montage.

c. Observation des oscillogrammes

Voir feuille en annexe

d. Analyse de fonctionnement

a.
$$0 < t < \frac{T}{2}$$

 K_2 ouvert et K_1 fermé $\Rightarrow u_{K1} = 0$ et u = E

 $U < I < I_1$

i<0, le transistor délivre uniquement un courant positif.

T₁ bloqué,

la diode D₁ conduit.

La diode est appelée «diode de récupération ». C'est une phase de récupération

p = u.i < 0: il y a transfert d'énergie de la charge vers la source de tension.

$$\underline{t_1} \leq \underline{t} \leq \frac{T}{2}$$

i > 0,

 T_1 devient saturé et la diode se bloque.

Puissance: p = u.i = E.i > 0: transfert d'énergie de la source vers la charge.

$$\mathbf{b.} \quad \frac{T}{2} < t < T$$

 K_1 ouvert et K_2 fermé $\Rightarrow u_{K2} = 0$ et u = -E

$$\frac{T}{2} \leq t \leq t_2$$

 $i > 0 \Rightarrow$ $i_2 < 0$ et $i_{D2} > 0$, la diode D_2 est passante (T_2 bloqué): **phase de récupération**

Puissance: p = u.i = -E.i < 0: transfert d'énergie de la charge vers la source.

<u>t</u>₂< <u>t</u> < <u>T</u>

 $i < 0 \Rightarrow i_2 > 0$, $i_{D2} < 0$: la diode D_2 se bloque et T_2 est saturé.

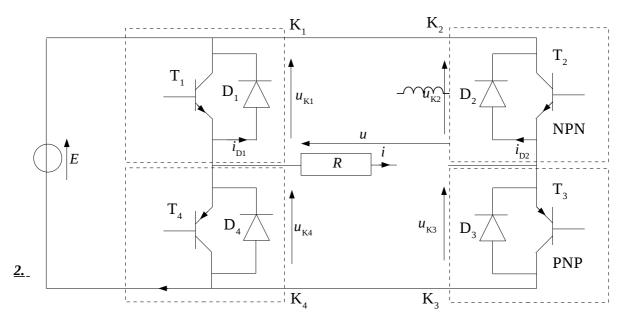
Puissance: p = u.i = -E.i > 0: transfert d'énergie de la source vers la charge.

e. Grandeurs caractéristiques

- \checkmark La période u est imposée par la commande des interrupteurs K_1 et K_2 ;
- ✓ la valeur efficace U = E

Remarques:

- Les sources de tension doivent être <u>réversible en courant</u>.
- ✔ Le montage à deux interrupteurs impose une commande symétrique.


f. Modélisation

 $\begin{array}{c|c} u_{K1} \\ \hline i_{D1} \\ \hline E \\ u \\ \hline i_{D2} \\ \hline K_{2} \\ \hline \end{array}$

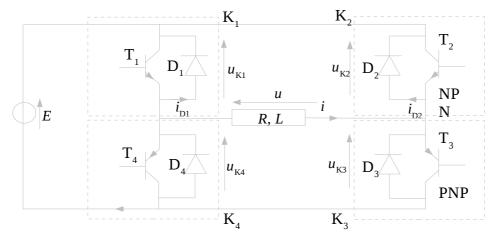
La commande et la nature des interrupteurs ne figurent pas sur ce schéma

III. ONDULEUR DE TENSION MONOPHASÉE EN PONT.

1. schéma du montage

Observation des oscillogrammes.

Dans le cas où la charge est la même que précédemment et où la source de tension à la même valeur de E, les oscillogrammes de u et de i sont identiques.

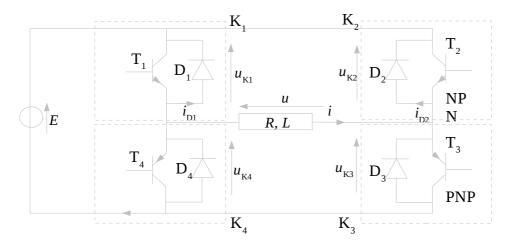

3.Analyse de fonctionnement

a.0 $\leq t \leq \frac{T}{2}$

La commande impose que K_2 et K_4 soient ouverts et K_1 et K_3 fermés. u = E > 0.

de $0 < t < t_1$

i > 0.



Le courant i est négatif, ce qui impose la conduction de D_1 et D_3 . Ces diodes restent passantes tant que l'intensité du courant qui les traverse ($i_{D1} = i_{D3} = -i$) reste positive.

Pendant cet intervalle de temps, la puissance instantanée p = u.i = E.i < 0: il y a transfert d'énergie de la charge vers la source de tension.

$$\underline{\text{De }t_1 \leq t \leq \quad \frac{T}{2}}$$

i > 0.

A l'instant t_1 , le courant i s'annule et devient positif, ce qui impose la conduction de T_1 et T_3 .

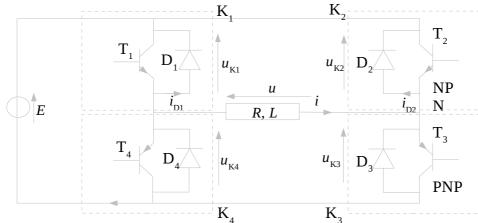
Il y a commutation de D_1 vers T_1 et de D_3 vers T_3 .

Pendant cet intervalle de temps, la puissance instantanée p = u.i = E.i > 0: il y a transfert d'énergie de la source de tension vers la charge.

b.
$$\frac{T}{2} \le t \le T$$

La commande impose que K_1 et K_3 soient ouverts et K_2 , K_4 fermés: u = -E < 0

$$\frac{T}{2} \leq t \leq t_2$$


Le courant i est positif, ce qui impose la conduction de D₂ et D₄.

Ces diodes restent passantes tant que l'intensité du courant qui les traverse ($i_{D2}=i_{D4}=i$) reste positive.

Pendant cet intervalle de temps, la puissance instantanée p = u.i = -E.i < 0: il y a transfert d'énergie de la charge vers la source de tension.

De $t_2 \le t \le T$

i < 0.

A l'instant t_2 , le courant i s'annule et devient négatif, ce qui impose la conduction de T_2 et T_4 .

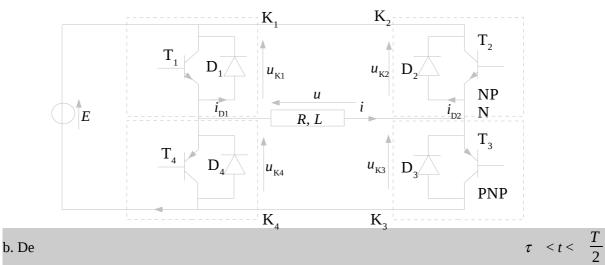
Il y a commutation de D_2 vers T_2 et de D_4 vers T_4 .

IV.ONDULEUR À COMMANDE DÉCALÉE

1. Schéma de montage

Le schéma est le même que précédemment, la commande des interrupteurs est décalée.

2.Observations des oscillogrammes.

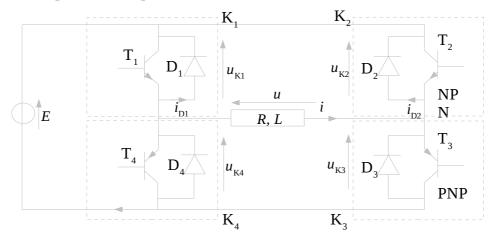

Voir feuille en annexe

3.Analyse de fonctionnement

a. De $0 < t < \tau$

la commande impose K_1 , K_2 ouverts et K_3 , K_4 fermés : u = 0 et i < 0

Puisque $i < 0 \Rightarrow$ conduction de T₄ et D₃. Pendant cet intervalle de temps, la puissance vaut p = u.i = 0W **C'est la phase de roue libre** (u = 0)

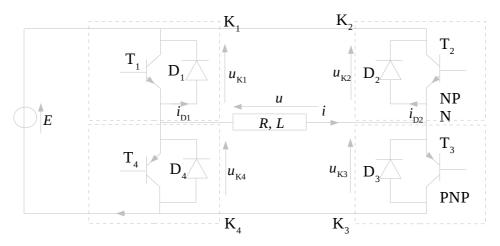

la commande impose K_2 , K_4 ouverts et K_1 , K_3 fermés : u = E

b.1. De $\tau < t < t_1$

i < 0.

Puisque $i < 0 \Rightarrow$ conduction de D_1 et D_3

Pendant cet intervalle de temps, la puissance vaut p = u.i = E.i < 0: tranfert d'énergie de la charge vers la source: **c'est la phase de récupération.**

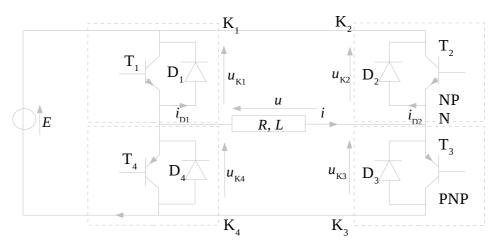


b.2. De
$$t_1 \le t \le \frac{T}{2}$$

i > 0

Puisque $i > 0 \Rightarrow$ conduction de T_1 et T_3 .

Pendant cet intervalle de temps, la puissance vaut p = u.i = E.i > 0: tranfert d'énergie de la source vers la charge : **c'est la phase d'alimentation.**


c.De
$$\frac{T}{2} < t < \frac{T}{2} + \tau$$

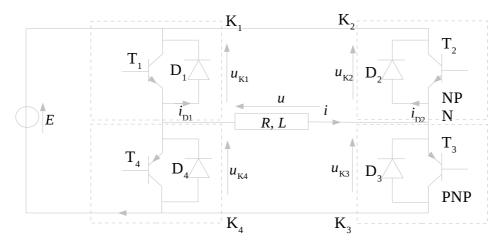
i > 0

La commande impose K_3 , K_4 ouverts et K_1 , K_2 fermé : u = 0 et i > 0. Puisque $i > 0 \Rightarrow$ conduction de T_1 et D_2 .

Pendant cet intervalle de temps, la puissance vaut p = u.i = 0W

C'est la phase de roue libre (u = 0)

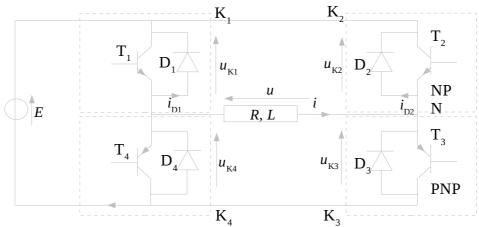
d.De
$$\frac{T}{2} + \tau < t < T$$


La commande impose K_1 , K_3 ouvert et K_2 , K_4 fermé: u = -E

d.1.De
$$\frac{T}{2} + \tau \le t \le t_2$$

i > 0

Le courant i > 0 impose la conduction de D_2 et D_4 .


Pendant cet intervalle de temps, la puissance instantanée p = u.i = -E.i < 0 :tranfert d'énergie de la charge vers la source; **phase de récupération**

d.2.De $t_2 \le t \le T$

i < 0

Puisque $i < 0 \Rightarrow$ conduction de T_2 et T_4 . Pendant cet intervalle de temps, p = u.i > 0: tranfert d'énergie de la source vers la charge: **phase d'alimentation.**

4.Grandeurs

caractéristiques du montage.

a. Période

La période est imposée par la commande forcée des interrupteurs

b. Valeur efficace

Par définition: $U = \sqrt{\langle u^2 \rangle}$

$$U^{2} = \frac{1}{T} \int_{0}^{T} u^{2} dt = \frac{2}{T} \int_{0}^{\frac{T}{2}} u^{2} dt = \frac{2}{T} \int_{\tau}^{\frac{T}{2}} E^{2} dt = \frac{2}{T} E^{2} [t] \frac{T}{2} = \frac{2}{T} E^{2} \left(\frac{T}{2} - \tau \right) = E^{2} \left(1 - \frac{2\tau}{T} \right)$$

$$U = E \sqrt{1 - \frac{2\tau}{T}}$$

En réglant τ , il est possible de faire varier la valeur efficace de la tension et, en particulier d'obtenir un rapport $\frac{V}{f}$ = constant