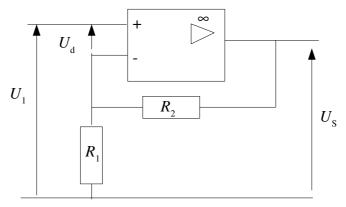
APPLICATIONS AVEC DES AMPLIFICATEURS OPERATIONNELS

Les fonctions sont réalisées avec des AOP considérés comme idéaux.

I. FONCTIONS MATHÉMATIQUES

I.1. MULTIPLICATION PAR UNE CONSTANTE

I.1.1. AMPLIFICATEUR NON INVERSEUR.



Contre réaction U_d =, l'amplificateur est en régime U_d = V^+ - $V^ V^+$ =

Diviseur de tension: $V^- = \dots$

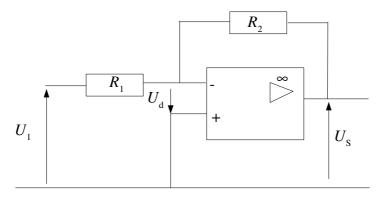
 $U_d = \dots = 0 \Rightarrow U_1 = \dots \Rightarrow$

*U*_S==

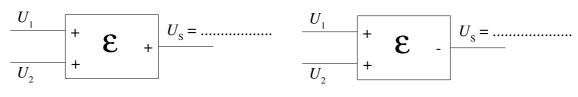
avec K = $\Rightarrow U_S$ =

Si $R_2 = 0$, K =, $U_S =$: montage

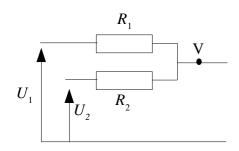
I.1.2. AMPLIFICATEUR INVERSEUR.



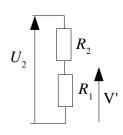
I.2. ADDITION ET SOUSTRACTION I.2.1.ADDITION



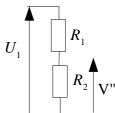
Addition non inverseur Addition inverseur



On éteint U_1 : le schéma se réduit à



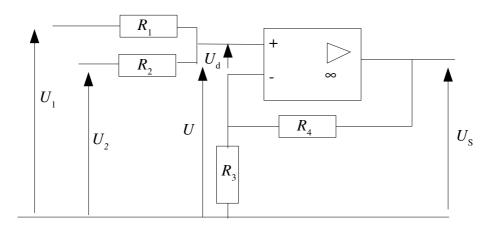
On éteint U_2 : le schéma se réduit à



V = + =

$$si R_1 = R_2 \Rightarrow V = \dots$$

A. ADDITIONNEUR NON INVERSEUR



contre réaction, U_d =, l'AOP fonctionne en régime

diviseur de tension : U_S ==

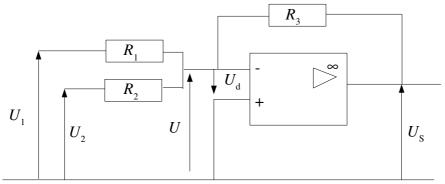
or *U* = +

 \Rightarrow $U_{\rm S}$ =

si $R_1 = R_2 \implies U_S = \dots$

si $R_1 = R_2$ et $R_3 = R_4 \Rightarrow U_S = \dots$

B. ADDITIONNEUR INVERSEUR



contre réaction, $U_{\rm d}$ =, l'AOP fonctionne en régime

loi des mailles: = 0 \Rightarrow i_1 =

..... $= 0 \Rightarrow i_2 =$

.....= 0 ⇒ i =

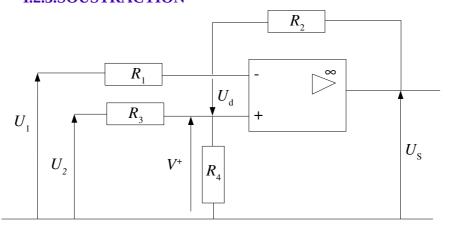
loi des noeuds: *i* =

.....+....

 $\Rightarrow U_S = \dots$

Si $R_1 = R_2 = R_3$ $U_S =$

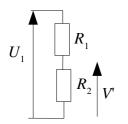
I.2.3.SOUSTRACTION



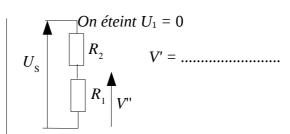
contre réaction, $U_{\rm d}$ =, l'AOP fonctionne en régime

diviseur de tension : V^+ =.....

Théorème de superposition:



On éteint $U_s = 0$



V-=.....+

$$U_{\rm d} = V^+ - V^- = 0 \implies V^+ = V^-$$

 $\Rightarrow \dots = \dots + \dots + \dots$

.....-

 $U_S = \dots$

si
$$\frac{R_2}{R_1} = \frac{R_3}{R_4}$$
 $U_S = \dots$

II. FONCTION COMPARATEUR

 $U_{\rm C}$, $U_{\rm B}$ et $U_{\rm H}$ sont appelés

A chaque passage de la tension U_E par, il y ade la tension de sortie U_S .

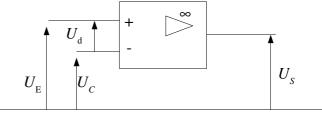
L'alimentation des AOP est symétrique \pm V_{CC} = \pm 15 V

II.1.COMPARATEUR A UN SEUIL

II.1.1. COMPARATEUR NON INVERSEUR

La tension d'entrée est appliquée sur l'entrée non inverseuse.

Régime de



 U_{s}

 $U_{\rm d}$ 0

 $U_{\rm d} =$

Pour $U_d \dots 0 \Rightarrow \dots > 0 \Rightarrow \dots > \dots > \dots$

 $\Rightarrow U_{S} = \dots = \dots$

Pour $U_d \dots 0 \Rightarrow \dots > 0 \Rightarrow \dots < \dots$

 U_{c}

 \Rightarrow $U_{\rm S} = \dots = \dots = \dots$

II.1.2. COMPARATEUR INVERSEUR

La tension d'entrée est appliquée sur l'entrée inverseuse.

Régime de

 $U_{\rm d}$ 0

 $U_{\rm d} =$

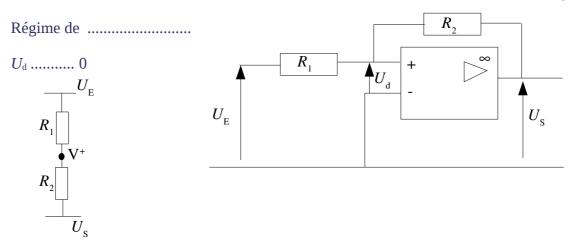
Pour U_d 0 \Rightarrow $0 \Rightarrow$

 $\Rightarrow U_S = \dots = \dots$

Pour U_d \Rightarrow $U_S =$ =

II.2.COMPARATEUR A DEUX SEUILS

II.2.1. COMPARATEUR A DEUX SEUILS NON INVERSEUR SYMETRIQUE



En utilisant le théorème de superposition:

On en déduit V^+ =

V est relié à la masse $\Rightarrow V$ =

 $U_{\rm d} = V^{+} - V^{-} = \dots$

.....= 0 ⇒= 0

⇒=

 U_{E} = = = U_{B}

 2^{nd} cas: *état initial* $U_{\text{S}} = -V_{\text{sat}} = -V_{\text{CC}}$ Au moment du basculement U_{d} 0

⇒ =

 $U_{\mathrm{E}} =$ = = U_{H}

II.2.2. COMPARATEUR A DEUX SEUILS INVERSEUR SYMETRIQUE

Régime de	$U_{\rm E}$ $U_{\rm d}$ $+$ $R_{\rm 2}$ $U_{\rm d}$ $U_{\rm d}$ $U_{\rm d}$ $U_{\rm d}$ $U_{\rm d}$ $U_{\rm d}$
$V^+ = \dots$ $U_d = \dots$	
1^{er} cas: état initial U_{S} = - V_{sat} = - V_{CC}	Au moment du basculement U_d 0
= ($0 \Rightarrow \dots = U_{\mathrm{E}}$
$U_{\rm E} ==$ =	= $U_{\rm B}$ 0
2^{nd} cas: état initial $U_{\text{S}} = V_{\text{sat}} = V_{\text{CC}}$	Au moment du basculement $U_{ m d}$ 0
	$\dots = 0 \implies \dots = U_{\mathrm{E}}$