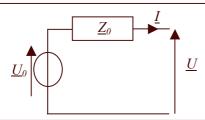
Eteindre une source de tension parfaite, c'est la remplacer par un interrupteur fermé. Eteindre une source de courant parfaite, c'est la remplacer par un interrupteur ouvert.



$\underline{I_0}$ $\underline{Y_0}$ \underline{U}

M.E.T. (Thévenin): $\underline{U} = \underline{U}_0 - \underline{Z}_0 \underline{I}$

- $ightharpoonup \underline{U}_0$: tension complexe à vide. Pour déterminer \underline{U}_0 , on isole le dipôle actif linéaire du reste du montage ($\underline{I} = 0$) et on calcule $\underline{U} = \underline{U}_0$.
- ➤ <u>Z</u>₀: impédance complexe du circuit. C'est l'impédance équivalente du circuit lorsque toutes les sources sont éteintes.

M.E.N. (Norton): $I = I_0 - Y_0 \cdot U$

- ➤ <u>I</u>₀: intensité de courant complexe à vide. Pour déterminer <u>I</u>₀, on isole le dipôle actif linéaire du reste du montage et on court-circuite la sortie. L'intensité du courant dans le fil de sortie est <u>I</u>₀.
- \succeq \underline{Y}_0 : admittance complexe du circuit. C'est l'admittance équivalente du circuit lorsque toutes les sources sont éteintes.

Equivalence M.E.T. et M.E.N :
$$\underline{I_0} = \frac{\underline{U_0}}{Z_0}$$
 ; $\underline{Y_0} = \frac{\underline{1}}{Z_0}$; $\underline{U_0} = \frac{\underline{I_0}}{Y_0}$; $\underline{Z_0} = \frac{\underline{1}}{Y_0}$

M.E.T. et M.E.N. avec des sources commandées.

Pour déterminer \underline{U}_0 et \underline{I}_0 , appliquer les théorèmes sans éteindre les sources commandées. Pour déterminer \underline{Z}_0 (ou \underline{Y}_0), il faut :

- > Eteindre les sources non commandées ;
- Placer une source de tension \underline{U} à la sortie du montage. Ce générateur délivre un courant \underline{I} .
- ightharpoonup Calculer $\underline{Z_0} = \frac{\underline{U}}{I}$

PUISSANCE

Puissance instantanée (W) : p(t) = u(t).i(t). Puissance active (W) : $P = U.I. \cos \varphi$

Puissance réactive (Var): $Q = U.I.\sin \varphi$

Puissance apparente (VA): S = U.I.

Relation entre les puissances : $S^2 = P^2 + Q^2$

Facteur de qualité : $Q = \frac{|\text{puissance réactive}|}{\text{puissance active}}$

U: tension efficace aux bornes du dipôle I: intensité efficace aux bornes du dipôle φ : déphasage de u/i

 $\tan \varphi = \frac{P}{Q}$ En complexe : $\underline{S} = \underline{U}.\underline{I}^* = P + j.Q$

facteur de puissance : $\cos \varphi = \frac{P}{S}$

MODELE SERIE D'UN DIPOLE:

$$\underline{Z} = R + j.X$$

R: résistance du dipôle (Ω)

X: réactance du dipôle (Ω)

X > 0: dipôle inductif X = 0: dipôle résistif X < 0: dipôle capacitif

$$Q_{\rm s} = \frac{|X|}{R}$$

MODELE PARALLELE D'UN DIPOLE:

$$\underline{Y} = G + j.B$$

G : conductance du dipôle (S)B : susceptance du dipôle (S)

B > 0: dipôle capacitif B = 0: dipôle résistif B < 0: dipôle inductif

$$Q_{\rm p} = \frac{|B|}{G}$$

Equivalence entre les modèles série et parallèle :

Série $(R_s, X_s) \Rightarrow$ parallèle (R_p, X_p)

$$R_{\rm p} = R_{\rm s} (1+Q^2) \text{ et } X_{\rm p} = X_{\rm s} \cdot \frac{1+Q^2}{Q^2}$$

Si Q²>>1 :
$$R_p = R_s \cdot Q^2$$
 et $X_p = X_s \cdot Q^2$

Parallèle $(G_p, B_p) \Rightarrow$ série (G_s, B_s)

$$G_{\rm s} = G_{\rm p} (1+Q^2) \text{ et } B_{\rm s} = B_{\rm p} \cdot \frac{1+Q^2}{Q^2}$$

Si Q²>>1 :
$$G_s = G_p \cdot Q^2$$
 et $B_s = B_p \cdot Q^2$