
CARACTERISTIQUE DE DIPOLE LINEAIRE EN REGIME SINUSOÏDALE – BOBINE et CONDENSATEUR

I. BOBINE

1. LE MONTAGE

Réaliser le montage suivant :

G.B.F délivre une tension sinusoïdale. *L* : bobine de 0,2 H

 $r = 100 \Omega$

✓ Placer sur le schéma, les voies 1 et 2 de l'oscilloscope pour mesurer le courant i(t) du circuit et la tension $u_L(t)$ aux bornes de la bobine.

2. MESURES

Relever, sur l'oscilloscope, \hat{U}_L [tension maximale de la tension $u_L(t)$] \hat{I} [valeur maximale de l'intensité de courant i(t)], ainsi que le déphasage $\varphi_{u/i}$ (de u_L par rapport à i) pour différentes fréquences du G.B.F. En déduire les valeurs efficaces et le rapport $\frac{U_L}{I}$. Compléter le tableau suivant :

f	1 kHz	2 kHz	3 kHz	4 kHz	5 kHz	6 kHz	7 kHz	8 kHz	9 kHz	10 kHz
$\hat{U}_{\scriptscriptstyle L}$										
$U_{ m L}$										
Î										
I										
$oldsymbol{arphi}_{u/i}$										
$\frac{U_L}{I}$										

3. INTERPRETATION

On appelle impédance $Z_{\rm L}$ le rapport $\frac{U_{\rm L}}{I}$ et il s'exprime en Ω .

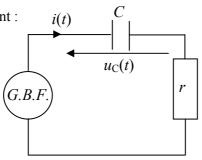
Page 1 sur 3 auteur : F.FRESNEL

Nom:	Nom du binôme :										
✓	Que constatez-vous de la valeur de l'impédance en fonction de la fréquence ?										
	L'impéda OUI Calculer		NO NO	N	•		·	cochez la	bonne rép	oonse)	
f	1 kHz	2 kHz	3 kHz	4 kHz	5 kHz	6 kHz	7 kHz	8 kHz	9 kHz	10 kHz	

f	1 kHz	2 kHz	3 kHz	4 kHz	5 kHz	6 kHz	7 kHz	8 kHz	9 kHz	10 kHz
$L.2\pi.f$										

 \checkmark Que constatez-vous du déphasage $\varphi_{u/i}$ en fonction de la fréquence ?

 \checkmark Le déphasage $\varphi_{u/i}$ est-il dépendant de la <u>fréquence</u> du signal d'entrée ? (cochez la bonne réponse)


	OUI			NON
--	-----	--	--	-----

✓ Comparer Z_L et $L.2\pi f$. Conclure :

II. CONDENSATEUR

1. LE MONTAGE

Réaliser le montage suivant :

G.B.F délivre une tension sinusoïdale. C: condensateur de 0,1 µF

 $r = 100 \Omega$

Placer sur le schéma, les voies 1 et 2 de l'oscilloscope pour mesurer le courant i(t) du circuit et la tension $u_c(t)$ aux bornes du condensateur.

2. MESURES

Relever, sur l'oscilloscope, \hat{U}_c [tension maximale de la tension $u_c(t)$] \hat{I} [valeur maximale de l'intensité de courant i(t)], ainsi que le déphasage $\varphi_{u/i}$ (de u_c par rapport à i) pour différentes fréquences du G.B.F. En déduire les valeurs efficaces et le rapport $\frac{U_c}{I}$. Compléter le tableau suivant :

Page 2 sur 3 auteur: F.FRESNEL

f	1 kHz	2 kHz	3 kHz	4 kHz	5 kHz	6 kHz	7 kHz	8 kHz	9 kHz	10 kHz
\hat{U}_c									,	
$U_{ m c}$										
Î										
I										
$oldsymbol{arphi}_{u/i}$										
U_c										

3. INTERPRETATION

On appelle impédance $Z_{\rm c}$ le rapport $\frac{U_c}{I}$ et il s'exprime en Ω .

✓	Que constatez-vous de la valeur de l'impédance en fonction de la fréquence ?
✓	L'impédance est-il dépendant de la <u>fréquence</u> du signal d'entrée ? (cochez la bonne réponse)
	OUI NON
✓	Calculer pour chaque fréquence le rapport suivant $\frac{1}{C.2\pi.f}$:

f	1 kHz	2 kHz	3 kHz	4 kHz	5 kHz	6 kHz	7 kHz	8 kHz	9 kHz	10 kHz
1										
$\overline{C.2\pi.f}$										

✓	Comparer $Z_{\rm C}$ et $\frac{1}{C.2\pi.f}$. Conclure :
✓	Que constatez-vous du déphasage $\varphi_{u/i}$ en fonction de la fréquence ?
✓	Le déphasage $\varphi_{u/i}$ est-il dépendant de la <u>fréquence</u> du signal d'entrée ? (cochez la bonne réponse) OUI NON

Page 3 sur 3 auteur : F.FRESNEL