
CARACTERISTIQUE DE DIPOLE LINEAIRE EN REGIME SINUSOÏDALE – CONDUCTEUR OHMIQUE

1. LE MONTAGE

Réaliser le montage suivant :

G.B.F délivre une tension sinusoïdale. $R = 2.2 \text{ k}\Omega$ $r = 100 \Omega$

✓ Placer sur le schéma, les voies 1 et 2 de l'oscilloscope pour mesurer le courant i(t) du circuit et la tension $u_R(t)$ aux bornes du conducteur ohmique

2. MESURES

Relever, sur l'oscilloscope, \hat{U}_R [tension maximale de la tension $u_R(t)$] \hat{I} [valeur maximale de l'intensité de courant i(t)], ainsi que le déphasage $\varphi_{u/i}$ (de u_R par rapport à i) pour différentes fréquences du G.B.F. En déduire les valeurs efficaces et le rapport $\frac{U_R}{I}$. Compléter le tableau suivant :

f	1 kHz	2 kHz	3 kHz	4 kHz	5 kHz	6 kHz	7 kHz	8 kHz	9 kHz	10 kHz
$\hat{U}_{\scriptscriptstyle R}$										
$U_{ m R}$										
Î										
I										
$oldsymbol{arphi}_{u/i}$										
$\frac{U_R}{I}$										

3. INTERPRETATION

On appelle impédance $Z_{\mathbb{R}}$ le rapport $\frac{U_{\mathbb{R}}}{I}$ et il s'exprime en Ω .

Page 1 sur 2 auteur : F.FRESNEL

 T'e STL
 Nom du binôme :

 Nom :
 Nom du binôme :

 V Que constatez-vous de la valeur de l'impédance en fonction de la fréquence ?

 L'impédance est-il dépendant de la fréquence du signal d'entrée ? (cochez la bonne réponse)

 OUI
 NON

 V Mesurer avec un ohmètre, la valeur de la résistance du conducteur ohmique R: R =

 V Comparer la valeur de R et la valeur de l'impédance Z_R . Conclure.

 V Que constatez-vous du déphasage $\varphi_{u/i}$ en fonction de la fréquence ?

 \checkmark Le déphasage $\varphi_{u/i}$ est-il dépendant de la <u>fréquence</u> du signal d'entrée ? (cochez la bonne réponse)

NON

OUI

Page 2 sur 2 auteur : F.FRESNEL