DIPÔLES ELEMENTAIRES EN RÉGIME SINUSOÏDAL

DEFINITIONS

fonctionnement en régime sinusoïdal

Lorsqu'un dipôle passif linéaire est traversé par un courant sinusoïdal de	
valeur instantanée :	, il apparaît entre ses
bornes une tension également sinusoïdal et de même fréquence:	

Constatations expérimentales

Pour un dipôle donné, à une fréquence fixe:

- les valeurs efficaces de la tension et du courant sont telles que.....;
- la différence de phase (......) =

Conséquences

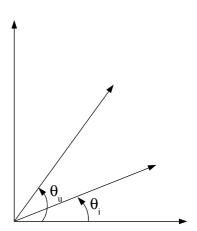
A la fréquence considérée, la connaissance de $\frac{U}{I}$ et de ($\Theta_u-\Theta_i$) suffit à caractériser le dipôle.

Caractérisation du dipôle

On peut exploiter la construction de Fresnel: $\frac{U}{I} = \text{constant et (} \Theta_{\scriptscriptstyle u} - \Theta_{\scriptscriptstyle i} \text{)} = \text{constant}.$

Impédance

On appelle du dipôle, la grandeur: $\vec{Z} = [$]



le de \vec{Z} est : Z = en

l'..... de \vec{Z} : Θ_z =.....

Admittance

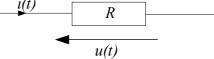
On appelle du dipôle, la grandeur : $\vec{Y}=$ [.......] de module et d'argument $\Theta_{_{V}}=$ en rad

DIPOLES ELEMENTAIRES

Résistance linéaire

 $u(t) = \dots$

La loi d'ohm s'applique aux valeurs instantanées:



par identification: $u(t) = U\sqrt{2}\sin(\omega t + \Theta_u)$

U=..... et Θ_u =

d'où $\varphi_{u/i} = \dots$: la tension u est en \dots avec i.

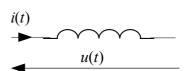
l'impédance est $\overline{Z}_{R} = \begin{bmatrix} \underline{U} \\ \underline{I} \end{bmatrix}$, $\Theta_{u} - \Theta_{i} = \begin{bmatrix} \dots \\ \underline{I} \end{bmatrix}$

l'admittance est $\overrightarrow{Y}_R = [$ ] = [.......]

construction de Fresnel: En prenant i comme référence des phases

Bobine idéale

Relations entre grandeurs instantanées:



Loi de Lenz: u(t)=.....

Soit
$$i(t) = I\sqrt{2}\sin(\omega t + \Theta_i)$$

$$\Rightarrow \frac{di}{dt} = \dots$$

par identification: $u(t) = U\sqrt{2}\sin(\omega t + \Theta_u)$

$$U$$
=..... et

$$\Theta_u$$
=....=

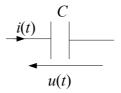
Construction de Fresnel: En prenant i comme référence des phases

$$\begin{array}{lll} \text{imp\'edance}: & \overrightarrow{Z_L} & = [......, &] \\ \text{admittance}: & \overrightarrow{Y_L} & = [......, &] \\ \end{array}$$

admittance:
$$\overrightarrow{Y}_L = [\dots, \dots]$$

Condensateur parfait

Relation entre grandeurs instantanées: i(t)



i=.....

avec
$$u(t) = U\sqrt{2}\sin(\omega t + \Theta_u)$$

$$\frac{du}{dt} = \dots = \dots$$

donc
$$i(t)$$
=.....

Par identification: avec
$$i(t) = I\sqrt{2}\sin(\omega t + \Theta_i)$$

$$\Theta_i$$
=....=

Construction de Fresnel: En prenant i comme référence des phases

REMARQUES

Pour une bobine idéale et un condensateur parfait, les impédances et les admittances dépendent de la fréquence.

- 1. En très haute fréquence ($f \rightarrow \infty$ donc $\omega \rightarrow \infty$)
 - Pour une bobine: $Z_L = L\omega \rightarrow \dots$ la bobine se comporte comme un interrupteur
 - Pour un condensateur: $Z_C = \frac{1}{C \, \omega} \rightarrow \ldots$ le condensateur se comporte comme un interrupteur
- 2. En très basse fréquence ($f \rightarrow 0$ donc $\omega \rightarrow 0$)
 - Pour une bobine: $Z_L = L\omega \rightarrow$ la bobine se comporte comme un interrupteur
 - Pour un condensateur: $Z_C = \frac{1}{C \, \omega} \rightarrow \dots$ le condensateur se comporte comme un interrupteur