DIPÔLES ELEMENTAIRES

DÉFINITIONS

1. FONCTIONNEMENT EN RÉGIME SINUSOÏDAL

Lorsqu'un dipôle passif linéaire est traversé par un courant sinusoïdal de valeur instantanée : $i(t) = I\sqrt{2}\sin(\omega\,t + \Theta_i)$, il apparaît entre ses bornes une tension également sinusoïdal et de même fréquence: $u(t) = U\sqrt{2}\sin(\omega\,t + \Theta_u)$

2. CONSTATATIONS EXPÉRIMENTALES

Pour un dipôle donné, à une fréquence fixe:

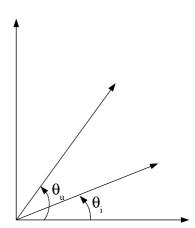
- les valeurs efficaces de la tension et du courant sont telles que $\frac{U}{I}$ = constant;
- la différence de phase ($\Theta_u \Theta_i$) = constant

3. CONSÉQUENCES

A la fréquence considérée, la connaissance de $\frac{U}{I}$ et de ($\Theta_u-\Theta_i$) suffit à caractériser le dipôle.

4. CARACTÉRISATION DU DIPÔLE

On peut exploiter la construction de Fresnel: $\frac{U}{I} = \text{constant et (} \Theta_{\scriptscriptstyle u} - \Theta_{\scriptscriptstyle i} \text{)} = \text{constant}.$



5. IMPÉDANCE

On appelle impédance du dipôle, la grandeur:

$$\vec{Z} = [\begin{array}{cc} \frac{U}{I} & ; & \Theta_u - \Theta_i \end{array}]$$

le module de Z est : $Z = \frac{U}{I}$ en Ω

l'argument de Z: $\Theta_z = \Theta_u - \Theta_i$

6. ADMITTANCE

On appelle admittance du dipôle, la grandeur : $\vec{Y} = [\frac{I}{U}, \Theta_i - \Theta_u]$ de module $Y = \frac{I}{U}$ exprimé en Siemens (S) et d'argument $\Theta_y = \Theta_i - \Theta_u = \Theta_z$ en rad

DIPÔLES ÉLÉMENTAIRES

1. RÉSISTANCE LINÉAIRE

La loi d'ohm s'applique aux valeurs instantanées: R u(t)=R.i(t) $i(t)=I\sqrt{2}\sin(\omega t+\Theta_i) \text{ d'où } u(t)=R.i(t)=R.I\sqrt{2}\sin(\omega t+\Theta_i) \text{ } u(t)$ par identification: $u(t)=U\sqrt{2}\sin(\omega t+\Theta_u)$

U=R.I et $\Theta_u=\Theta_i$ d'où $\varphi_{u/i}=0$: la tension u est en phase avec i.

l'impédance est
$$\overrightarrow{Z_R} = [\begin{array}{cc} \underline{U} \\ I \end{array}, \quad \Theta_u - \Theta_i \] = [R, 0]$$
 l'admittance est $\overrightarrow{Y_R} = [\begin{array}{cc} \frac{1}{R} \\ I \end{array}, \ 0] = [G, 0]$

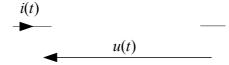
construction de Fresnel: En prenant i comme référence des phases

2. BOBINE IDÉALE

Relations entre grandeurs

instantanées:

Loi de Lenz:
$$u(t) = L \cdot \frac{di}{dt}$$

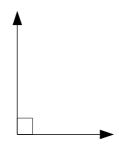


Soit
$$i(t) = I\sqrt{2}\sin(\omega t + \Theta_i)$$
 $\Rightarrow \frac{di}{dt} = \omega . I\sqrt{2}\cos(\omega t + \Theta_i) = \omega . I\sqrt{2}\sin(\omega t + \Theta_i + \frac{\pi}{2})$
 $u = L\omega . I\sqrt{2}\sin(\omega t + \Theta_i + \frac{\pi}{2})$

par identification: $u(t) = U\sqrt{2}\sin(\omega t + \Theta_u)$

$$U = L\omega I$$
 et $\Theta_u = \Theta_i + \frac{\pi}{2} \Rightarrow \varphi = \Theta_u - \Theta_i = \frac{\pi}{2}$ quadrature avance

Construction de Fresnel: En prenant i comme référence des phases



impédance: $\overrightarrow{Z_L} = [L\omega, \frac{\pi}{2}]$

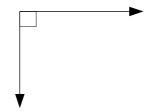
admittance: $\overrightarrow{Y}_L = \begin{bmatrix} \frac{1}{Lw}, -\frac{\pi}{2} \end{bmatrix}$

3. **CONDENSATEUR PARFAIT**

Relation entre grandeurs instantanées: $i=C.\frac{du}{dt} \text{ avec } u(t)=U\sqrt{2}\sin(\omega t+\Theta_u) \qquad u(t)$ $\frac{du}{dt} = \omega.U.\sqrt{2}\cos(\omega t+\Theta_u) = \omega.U\sqrt{2}\sin(\omega t+\Theta_u+\frac{\pi}{2})$ $\text{donc } i(t)=C.\omega.U\sqrt{2}\sin(\omega t+\Theta_u+\frac{\pi}{2})$

Par identification: avec $i(t) = I\sqrt{2}\sin(\omega t + \Theta_i)$

 $I = C.\omega.U$ $\Theta_i = \Theta_u + \frac{\pi}{2} \Rightarrow \varphi_{u/i} = \Theta_u - \Theta_i = -\frac{\pi}{2}$ quadrature arrière Construction de Fresnel: En prenant i comme référence des phases



Admittance: $\overrightarrow{Y}_C = [C\omega, \frac{\pi}{2}]$

Impédance: $\overline{Z}_C = \begin{bmatrix} \frac{1}{C\omega}, -\frac{\pi}{2} \end{bmatrix}$

REMARQUES

Pour une bobine idéale et un condensateur parfait, les impédances et les admittances dépendent de la fréquence.

- 1. En très haute fréquence ($f \rightarrow \infty$ donc $\omega \rightarrow \infty$)
 - Pour une bobine: $Z_L = L\omega \rightarrow \infty$ la bobine se comporte comme un interrupteur ouvert
 - Pour un condensateur: $Z_C = \frac{1}{C \omega} \rightarrow 0$ le condensateur se comporte comme un interrupteur fermé.
- 2. **En très basse fréquence** ($f \rightarrow 0$ donc $\omega \rightarrow 0$) Pour une bobine: $Z_L = L\omega \rightarrow 0$ la bobine se comporte comme un interrupteur fermé.
- 3. Pour un condensateur: $Z_C = \frac{1}{C\omega} \rightarrow \infty$ le condensateur se comporte comme un interrupteur ouvert.