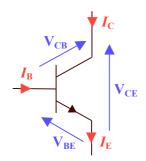
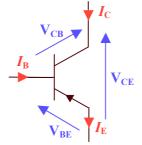
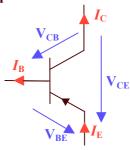

1^{ère} GEN transistor bipolaire


LE TRANSISTOR BIPOLAIRE

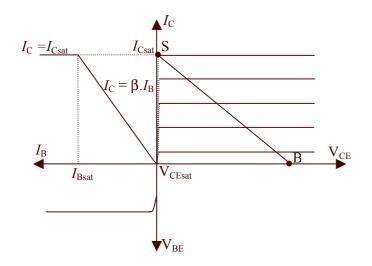

Un transistor bipolaire est un amplificateur de courant. Il est constitué par la juxtaposition de 3 zones semi-conductrices. Il est utilisé soit en tant qu'amplificateur de courant, soit comme un interrupteur



CONVENTIONS et RELATIONS

Deux conventions utilisées pour le transistor PNP

Toutes les grandeurs $(V_{CE}, V_{BE}, V_{CB}, I_B, I_C, I_E)$ sont positives.


Toutes les grandeurs $(V_{CE}, V_{BE}, V_{CB}, I_B, I_C, I_E)$ sont négatives.

Toutes les grandeurs $(V_{CE}, V_{BE}, V_{CB}, I_B, I_C, I_E)$ sont positives.

Relations valables quelque soit le transistor et la convention utilisée :

$$I_{\rm E} = I_{\rm C} + I_{\rm B}$$
 $V_{\rm CE} = V_{\rm CB} + V_{\rm BE}$

RESEAUX DE CARACTERISTIQUES

B (transistor bloqué) et S (transistor saturé) : régime de fonctionnement en <u>commutation</u>

Au point de saturation S

Le transistor idéal est équivalent à un interrupteur fermé.

$$V_{CE} = V_{CEsat} \approx 0$$

$$I_{C} = I_{Csat}$$
 $I_{B} \ge I_{Bsat}$ avec $I_{Bsat} = \frac{I_{Csat}}{\beta}$

$$V_{BE} \approx 0.7 \text{ V}$$

Au point de blocage B

Le transistor idéal est équivalent à un *interrupteur ouvert*. $I_B \approx 0$, $I_C \approx 0$, $V_{BE} = 0$

Entre B et S : régime de fonctionnement <u>linéaire</u>.

Le transistor est un amplificateur de courant commandé par la base.

$$I_{\rm C} = \beta . I_{\rm B}$$
 tant que $I_{\rm B} < I_{\rm Bsat}$.

Page 1 sur 1 auteur : F.FRESNEL